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Drivers for Higher-Speed DSLs
r___ﬁ

* MULTITUDE of 5G smaller cells
— high-speed low-latency wired support
— New 5G-fiber cost = 400B euros (for europe, DT CTO, 2016)

* Fiber theoretical capacity ~ 500 Tbps
— Today supports 1 Gbps to 100 Gbps (access-network)

* BUT

— INSTALL costs $3000-S4000/home (average)
* S4 trillion globally (instead pay national debts?)

— Successful business case needs < 1/10 of this cost

 The copper twisted pairs are there (1.3B)
— Run fiber part of the way (53000/10 homes is a better business case)
— Continues x in xDSL, so can x=T?

Yes, we think so |
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Current xDSL progression
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Vectoring = 15t Massive (MU-) MIMO

(2001 invention/intro to standards)
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. Massive antennas = vec DSLAM
*  Purple “Channel Hardening” = copper pairs

— Those are the wires with crosstalk canceled

— Then Mu-MIMO/vectoring again Wi-Fi to device from gateway!
* ltisindeed the same signal processing

— Diagonal dominance of DSL ~ channel hardening

* Use of linear precoder instead of non-linear (up to a point)

*  Maybe we can borrow back a bit from Massive MIMO’s mmW ?




MIMO? = It’s really MISO (or SIMO)
ﬁ

* Ininformation theory - single-sided coordination
— Downstream = vector broadcast channel (MISO)
— Upstream = vector multiple-access channel (SIMO)

— It’s why the term “vectoring was used” (not MISO/SIMO/
MIMO)

* MIMO coordinates BOTH ends
— So lots of antennas/wires at receive side in same place
— Some early “H” DSL (Voyan) did this

— But not physically possible when the homes are in
different places




Two TDSL Paths: multi pair & single pair

Transmission-line mode Waveguide mode

Multi

Single

harder - use
TM / TE modes

easier /
conventional

Bond many
Pairs

enormous
bandwith

lower

for cell

e bandwidth
Terabit/s on 100 pairs Terabit/s on 1 pair
(to cell or distribution pt) (from distribution pt to home)

TDSL 6



Phantoms DSL 2-pair (4x4)
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In general, N pair 2 2N-1 channels

N=100, and R= 5Gbps (G.MGfast) = 1 Tbps




Issues with “Phantom” TDSL
ﬁ

* Only back-haul because of receiver matching

— Or more generally receiver coordinated
processing

* May need too many “repeater” points

— Emissions could be problematic
* Limited use -
e BUT, itis a Terabit
 How about a Terabit/line—> Waveguide Mode




Single Pair: Cable Cross Section

plastic insulator

copper wire

r.copper

« Today’s xDSL on the copper (diﬁerenﬁw

- — And/or the air gaps? (green)
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Surface Wave Transmission

(1909 Sommerfeld wave)
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Surface Mode (or TM10)

— Waves use single wire in TM mode as guide
* E.g. Goubau antenna or “G-line”
* See also AT&T “AirGig”

— Effectively wireless transmission
*  Works reasonably well (no atmosphere inside cable)

* Dielectric (plastic) can help (see [Wiltske]), p. 971)
keep energy close

— Tube with non-uniform dilectric constant
* Conformal mapping of 1/r dimension

Energy still leaks off wire if bent
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Surface-Wave Measurements 2006
— Table 1T

*  Single wire TMO1 Wiltse | Attenuation of Single-wire Transmission Lines
—  Wiltse’s surface-wave measurements are 2mm
wire core, not 0.5mm) Wire Frequency | Calculated Measured
— Measures attenuation/m Diameter GHz Attenuation Attenuation
mm dB/m dB/m
*  Wiltse Extrapolation 2.032 105 0.23 0.46
— .8dB/m @ .1-.3 THz 3.251 105 0.16 0.33
— Fatter wires

*  Grischkowsky has .5 db/m
— For .52mm diameter Cu wire
— 2" wire would probably improve transfer
— Like in twisted pair

. 100m should see 50-80 dB

* Bendingis less of a problem . " 0.003
— Each wire has a TM mode GFISChkOWSky %
— Between wires is a TEM plasmon polariton mode £ 0002}
— 2" TEM “plasmonic” (weaker?) to other pairs - 5
somewhat like phantoms/split-pairs @ 0.001}
— TIR mode %
—  Surface mode (maybe same as TM ...) g 0.000
— 3 --4 modes per pair =
Perp %-o.oob
< 5

Frequency (THz)




Cross Section Geometry

. 2
Circle Area=rr difference = 32+

6 2
Outer Hexagon = Nt

3/6 difference is area of the
free-space in a triangular
“waveguide” = .16r?

plastic insulator

copper wire

Altitude of triangular
“waveguide” = .53r

(600 GHz is A/2)

If plastic used 200 GHz

With 2L (say 100+) wires, there can be
y p(2L) transmitters (m=0,1,...)
or antennas into waveguide gaps (triangles)

r.copper

Many reflections to any spatial point:
(waveguide is really “Swiss Cheese” with many
interconnecting spaces). Big MIMO opportunity.
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MIMO matrix with Gaussian entries at any point in

MIMO
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space, which is same as Rayleigh fading in wireless,
except static sample

Equivalent of “tunable” laser with vector-coordinated
excitation? (much less attenuation — like fiber?)




Vectoring = Massive MIMO
I ———

. Lets try m=1 with TM antenna(s) wirelessly exciting each wire end Y .
—  Photoconductive antennas perhaps? o >
—  Both polarizations (TM and TE) for each wire
e Or possibly for pairs of wires
4,
4
. There is also a TEM plasmon polariton mode \\'/ >

— Atleast one, really two
—  Could think of this as dual polarization, but not quite really
— Thereiis also at least one TIR mode (total internal reflection) with sheath

. Nominally intersections would introduce crosstalk between the TMs and
TEMs

—  Use MIMO or MISO (just like in mmW wireless 5G, except mmW/10)
—  Will tend toward log normal

. “Swiss Cheese” Waveguide
—  ULTRA rich scattering (exactly what massive MIMO needs)

. Coupling (splicing) is open to innovations, but photoconductive and other
types of antennas/lasers/detectors do exist in these frequency ranges today.




Vectoring ~ Channel Hardening

Vectored
DSLAM

Customer 1

Customer 2

CPE 2

Say from 100 GHz to 300 GHz

— Use 4096 tones, so roughly 50 MHz wide each
— Two wires in a pair, and two polarizations

Its conceivable that even 2.5 bits/ tone average, so 1 Tbps
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—0.05 f11 ]-d
Channel (Grischkowsky) H(f] —p \ 10
Xtalk (this paper) _0. 5.IL ]
— Log normal Xl:f) _ 1[}}{;10 e 00 10 ] a Mean k=0 dB
B | Var =6 dB

20 dBm total transmit power, flat transmit PSD

4096 subcarriers from 100 GHz to 300 GHz, 48.8 MHz subcarrier spacing
— Bitloading from 1 to 12 bits/Hz
— 10% phy-layer overhead removed before presenting results
— 4.5 dB coding gain, 1.5 dB implementation loss
— Carriers from 50 GHz to 150 GHz were used for the 10 Gbps results

50 pairs, vector precoded with either zero-forcing linear precoder or Non-Linear Precoder
(NLP) using Generalized Decision Feedback Equalization (GDFE); ideal channel estimation
assumed.

-160 dBm/Hz background AWGN.

We also add in a TM2 and TEM2 mode for 400 GHz to 500 GHz (same parameters)




Results in Tbps [down+up]/pair
I ———

100-300 GHz TDSL, per Home data rates
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 Can any PON get 1 Tbps to each customer?
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Bit Loading

each polarization of 1 wire
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Longer Range, Lower Speed?
—-__1

60-120 GHz TDSL, per Home data rates
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Very-high speed TDSL
I ———

* Adding TE2 and TEM2 modes from 400-500 GHz

100-500 GHz TDSL, per Home data rates
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Antennas (analog processing)?

e  What would antennas look like ?

— Annular rings around each wire end
— Also at CPE side

Q W -

Possibly multiple co-centric rings at CPE side
— Combinations

Catch as much drifting energy on CPE receiver as possible (dual for upstream transmitter)

What would coupling to waveguides look like? (photoconductive, photodetect)

— It may be feasible to have on die a coupler in this 200-400 GHz frequency range.
*  Coupling losses?

Have not included “nested MIMO” over the 4 (or more) antennas per home in results

— This will be a large improvement (like vector-bonding in multi-line DSL, but perhaps better)
e Current plots ignore this improvement

However, we were optimistic on the energy loss after the sheath-break on the surface waves
— The two effects may offset

& 5/8/17
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Digital Signal Processing?

* Conversion devices?
— Might not use all 200 GHz, but still ...
— ADC's running at 120 Gsamples/second exist (Jarittech)
— Use Multicarrier (AMT instead of DMT)?

* Each tone could have its own ADC/DAC (so easily available, but many in
parallel)

* Processing Capabilities
— Vector Engine, even at per tone of 50 MHz
— .1-.25 Giga-ops per tone
— Tera-ops for a full system

* Current Nvidia Tesla GP100 has 5 Teraflops in 16nm CMQOS
* 4-7 nm on immediate horizon and should allow cost reduction

— Within emerging capabilities
— Start at 100 Gbps instead (1/10 the cost)?

5/8/17
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Opportunities — Measurements
ﬁ

* How good is the log-normal model for waveguide
modes’ xtalk?
— Might this xtalk be larger?

 Even 10% of these numbers is >> “G.mgfast”

* Areal cable measurement or a few would help
— These modes certainly exist, but what is attenuation?
— Best/reasonable antenna/interface designs?




What about yet-higher-order modes?
I ———

* They exist!
* Higher bandwidths, but attenuation?
— Unknown for now

— Likely need even more antennas/wire (MIMO)

— 10 meters (instead of 100m) might work

* Not clear if waves could be focused like surface waves by MIMO
processing to “hug the wires” as they separate and go to individual
homes

* Grounded shield would contain them though

— PDSL? (P=Petabit or 10°)

 TDSL will probably be enough for now




Conclusions

71

 TDSL is technically feasible with 100 pairs and phantoms used for
backhaul

— Also roughly 1 Tbps @100m, 100Gbps at 300m, 10 Gbps at 500m

e But of course on ALL 100 pairs used together
 Still could be very useful for 5G cell multitude

* Terabit/s DSL per home (or small cell) also appears feasible
— Using waveguide modes and vectoring — SINGLE pair
— Measurements of attenuation would help refine rate/range

* Probably with MIMO-channel characterization used

* Could be expensive to prototype
— Because of processing/converter speeds involved

* |sitworthit? (or should we spend $4 Trillion to replace all the
copper with fiber instead, say in the next 3-5 years ..... Or century?)

— Would 5G small cells be accelerated since this would reduce
deployment cost?
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Bare metal wire waveguide
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e Surface plasmon polariton

— EM surface wave that travels along an interface between metal (negative permittivity) and
dielectric (positive permittivity) based on surface electron density changes below metal’s
plasma frequency

* Phase velocity and group velocity is same (like free space) = no dispersion if frequency is way below
plasma frequency

— E-field decays exponentially vertical to the wire

- energy is confied near the conductor so no 1/r type of path loss. Only small ohmic loss due to electron
scattering = small in materials with high conductivity and high frequency

- Loss about 0.1%~0.25% of field strength in 1cm - 0.86dB/m ~ 2.1dB/m @ 0.25THz
— Problems

* TM mode - Hard to generate radially polarized EM wave & low coupling coefficient

* Need to be straight = lose energy due to bending

* Connecting two metal wires are not easy

b https://nanohub.org/resources/1852/download/2006.10.05-ece695s-109.pdf
& 5/8/17
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Splicer
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